Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 174: 74-83, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32304771

RESUMO

EDA2R is a member of the large family of tumor necrosis factor receptor (TNFR). Previous studies suggested that EDA2R expression might be increased in the kidneys of diabetic mice. However, its mRNA and protein expression in kidneys were not analyzed; moreover, its role in the development of diabetic kidney disease was not explored. Here we analyzed the mRNA and protein expressions of EDA2R in diabetic kidneys and examined its role in the podocyte injury in high glucose milieu. By analysis with real-time PCR, Western blotting, we found that both the mRNA and protein levels of EDA2R were increased in the kidneys of diabetic mice. Immunohistochemical studies revealed that EDA2R expression was enhanced in both glomerular and tubular cells of diabetic mice and humans. In vitro studies, high glucose increased EDA2R expression in cultured human podocytes. Overexpression of EDA2R in podocytes promoted podocyte apoptosis and decreased nephrin expression. Moreover, ED2AR increased ROS generation in podocytes, while inhibiting ROS generation attenuates EDA2R-mediated podocyte injury. In addition, EDA2R silencing partially suppressed high glucose-induced ROS generation, apoptosis, and nephrin decrease. Our study demonstrated that high glucose increases EDA2R expression in kidney cells and that EDA2R induces podocyte apoptosis and dedifferentiation in high glucose milieu partially through enhanced ROS generation.


Assuntos
Diabetes Mellitus/metabolismo , Nefropatias Diabéticas/metabolismo , Rim/metabolismo , Podócitos/metabolismo , Receptor Xedar/fisiologia , Animais , Apoptose , Células Cultivadas , Feminino , Rim/patologia , Proteínas de Membrana/metabolismo , Camundongos , Podócitos/patologia , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Oncogene ; 28(34): 3081-92, 2009 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-19543321

RESUMO

Colorectal cancers with mutations in the p53 gene have an invasive property, but its underlying mechanism is not fully understood. Through the screening of two data sets of the genome-wide expression profile, one for p53-introduced cells and the other for the numbers of cancer tissues, we report here X-linked ectodermal dysplasia receptor (XEDAR), a member of the TNFR superfamily, as a novel p53 target that has a crucial role in colorectal carcinogenesis. p53 upregulated XEDAR expression through two p53-binding sites within intron 1 of the XEDAR gene. We also found a significant correlation between decreased XEDAR expressions and p53 gene mutations in breast and lung cancer cell lines (P=0.0043 and P=0.0122, respectively). Furthermore, promoter hypermethylation of the XEDAR gene was detected in 20 of 20 colorectal cancer cell lines (100%) and in 6 of 12 colorectal cancer tissues (50%), respectively. Thus, the XEDAR expression was suppressed to <25% of surrounding normal tissues in 12 of 18 colorectal cancer tissues (66.7%) due to either its epigenetic alterations and/or p53 mutations. We also found that XEDAR interacted with and subsequently caused the accumulation of FAS protein, another member of p53-inducible TNFR. Moreover, XEDAR negatively regulated FAK, a central component of focal adhesion. As a result, inactivation of XEDAR resulted in the enhancement of cell adhesion and spreading, as well as resistance to p53-induced apoptosis. Taken together, our findings showed that XEDAR is a putative tumor suppressor that could prevent malignant transformation and tumor progression by regulating apoptosis and anoikis.


Assuntos
Anoikis , Neoplasias Colorretais/prevenção & controle , Proteína Supressora de Tumor p53/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Receptor Xedar/fisiologia , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/fisiologia , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Receptor Xedar/genética , Receptor fas/genética , Receptor fas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...